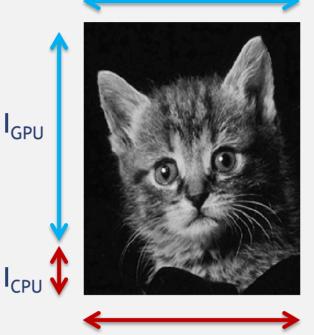


Hybrid Multi-Core Algorithms for Regular Image **Filtering Applications**

Shrenik Lad, Krishna Kumar Singh, Kishore Kothapalli, P.J. Narayanan International Institute of Information Technology, Hyderabad, India

HYBRID MULTICORE COMPUTING


- Traditional Accelerator based computing does not involve the CPU in parallel computation.
- Not a good proposition.
- CPUs have high compute power cores.
- Computational power of CPUs is also on the rise.

- Hybrid Multi-core Computing
- Use all resources available(in a single platform).
- Provides a higher level of parallelism and efficiency.

DATA DECOMPOSITION

• CPU and GPU operate on separate image parts I_{GPU} and I_{CPU}, and compute filtered output using lookup tables.

ALGORITHM FLOW

Filtering on ICPU

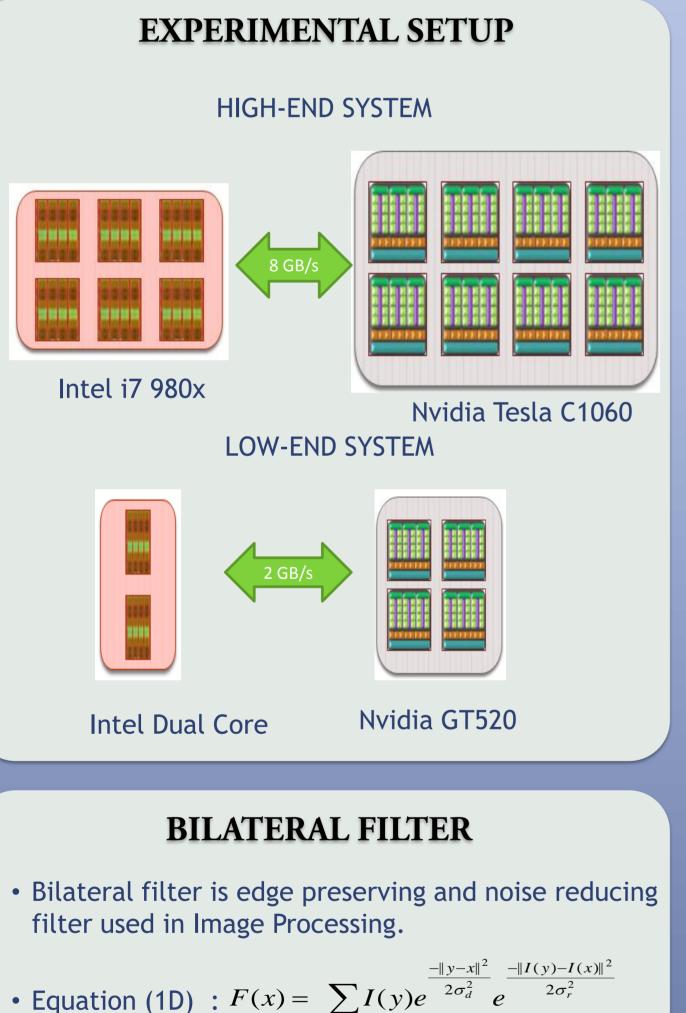
Transfer

0.875 ms

Transfer OCPU

0.253 ms

Filtering on IGPU


1.129 ms

Output Image

CONVOLUTION

- Common operation used in Image Processing.
- Involves only multiply-add operations. No exponential computations and hence no lookup tables.
- Fourier approach and Spatial approach for Convolution.
- On GPU, Spatial approach outperforms the Fourier approach whereas on CPU vice-versa is observed.
- Hence, using spatial approach on I_{GPU} and Fourier approach on I_{CPU} gives best results.
- Other components similar to the Bilateral Filtering implementation.

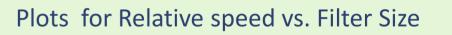
0.03 ms GPU Idle

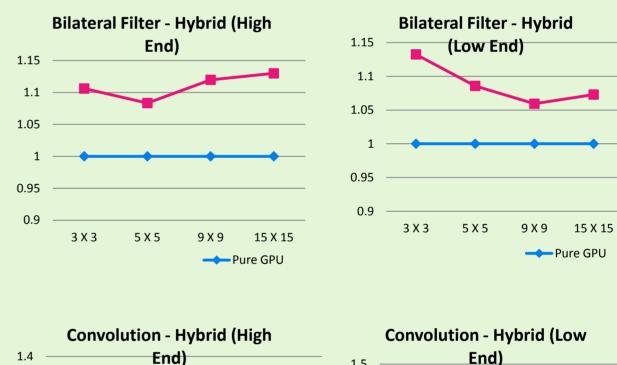
Pre-Processing

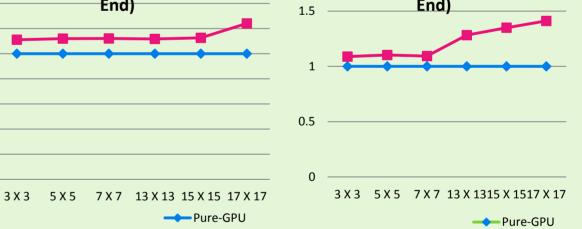
CPU:

GPU:

WORK DISTRIBUTION


CPU **Pre-Processing:** • Compute Intensity


Kernel code : thread (tx, ty)


GPU

 Load Image pixels from global memory to shared memory according to linear mapping.

RESULTS

CONCLUSIONS

- Hybrid CPU+GPU Algorithms for the following 2 filtering methods:
 - Bilateral Filtering
 - Convolution

- Spatial as well as Intensity components involved.
- We pre-compute all possible transcendentals on the CPU.

 $y \in N(x)$

X Dist	0	1	2	14	15
Y Dist					
0	E _{0,0}	E _{0,1}	E _{0,2}	E _{0,14}	E _{0,15}
1	E _{1,0}	E _{1,1}	E _{1,2}	E _{1,14}	E _{1,15}
2	E _{2,0}	E _{2,1}	E _{2,2}	E _{2,14}	E _{2,15}
14	E _{14,0}	E _{14,1}	E _{14,2}	E _{14,14}	E _{14,15}
15	E _{15,0}	E _{15,1}	E _{15,2}	E _{15,14}	E _{15,15}

Spatial Lookup

Range Lookup

254

Exponential

Term

1

12

13

I₂₅₄

I₂₅₅

- and Spatial Lookup tables.
- Divide Image into I_{CPU} and I_{GPU.}
- Filtering on I_{CPU}:
- •For each thread in parallel: compute output for a pixel using Spatial and Intensity lookup tables
- Syncthreads()
- Compute weighted sum for pixel (tx,ty) using Intensity and Spatial Lookup tables.
- Our implementation of Bilateral Filter is twice faster than the best GPU implementation.
- 10% average speedup compared to our Pure-GPU implementation of Bilateral Filter.
- 18% average speedup compared to our Pure-GPU implementation of Convolution.

REFERENCES

• V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D.Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey, "Debunking the 100X GPU" vs.CPU myth: an evaluation of throughput computing on CPU and GPU," in Proc. ISCA, 2010.

• C. Tomasi and R. Manduchi, "Bilateral Filtering for Gray and Color Images", Proceedings of the 1998 IEEE International Conference on Computer Vision, Bombay, India. • FIALKA O, Cadk M, "FFT and Convolution Performance in Image Filtering on GPU," in Proceedings of the Conference on Information Visualization, IEEE Computer Society. • Nvidia Corporation, "CUDA: Compute Unified Device Architecture programming guide," Technical report, Nvidia, Tech. Rep., 2007.