KrishnaCam: Using a Longitudinal, Single-Person, Egocentric Dataset for Scene Understanding Tasks

Krishna Kumar Singh, Prof. Kayvon Fatahalian, Prof. Alexei A. Efros

Carnegie Mellon University University of California, Berkeley University of California, Davis **Opportunity:** ubiquitous visual sensing will soon provide the opportunity to record a large fraction of life's events

KrishnaCam Dataset

Time Span: 9 months

Duration: 70 hours

Total Clips: 460 (10-20 minutes)

Locations: Various neighborhoods in Pittsburgh

Device: Google Glass Data: 720 p, 30 fps Accelerometer, Gyroscope, Orientation, GPS

Dataset contains diverse life experiences

Walking in different neighborhoods

Visiting parks

Talking to people

Shopping and eating outdoor

Different time of day

Different seasons

Prediction Task: Where Will Krishna Move Next ?

Motion trajectories

- For a given frame, trajectory represents motion in the next 7 seconds.
- Trajectories are generated through sensor data and used as ground-truth.

Forward

- Yellow lines indicate movement.
- Red dots indicate stopping.
- Our goal is to predict these trajectories.

StationaryAbout to stopGround-truth Trajectory examples

Prediction Problem

Trajectory prediction using nearest neighbors

• Goal: Predict future trajectory for a given frame.

Ground Truth Trajectory

Top 10 nearest neighbors using fifth layer deep features and cosine similarity as distance kernel

Predicted trajectory is average of trajectories of top 10 nearest neighbors

Predicting common human behaviors

People walk on sidewalk

Predicting common human behaviors

People remain stationary while eating

People stop soon after approaching a traffic button

Prediction of Krishna specific behaviors

Turning left at particular intersection

Ground Truth

Predicted

Top 10 Nearest Neighbors

Turning right outside my house

Predicting behavior due to transient objects

Ground Truth

Predicted

Top 10 Nearest Neighbors

Predicting stop, if car is in front

Is big data actually necessary for this task? (how much data do you really need?)

Prediction of rare events require more training data

Ground Truth

Prediction on different training data size

Prediction of rare events require more training data

Ground Truth

Prediction using 2 months of training data

Top 10 Nearest Neighbors

Prediction using 4 months of training data

Top 10 Nearest Neighbors

Prediction failure cases: bifurcations

Junction where both left and right turn possible

Stopping at an intersection, waiting at a traffic light, or continuing to walk

Density Estimate

Left-Right Bifurcation

Stop-Go Bifurcation

Amount of novel data decreases with time

Virtual Webcam (capture changes)

Person

Car

Season

Time of day

Crowded locations in dataset

Summary

- Simple nearest neighbor predictions are effective due to heavy redundancy in dataset.
- Simple nearest neighbor is able to generalize for the novel places for which we have seen diverse set of examples.
- Prediction of rare events require long term training data.

Thank You