

Motivation and Idea:

Train detectors with inexpensive image and video level tags, without using any localization information

- Existing weakly-supervised methods mine discriminative visual patterns, but they correspond to object-parts or include co-occurring background
- Key Idea: Transfer tracked object boxes from videos as a substitute for strong human supervision to obtain more precise boxes

Approach:

Mining discriminative positive visual regions:

- Find discriminative object proposals by clustering in pretrained Alexnet *pool-5* feature space and ranking clusters based on class consistency
- Most clusters do not tightly fit object due to scene clutter, occlusion, and intra class appearance variation

Unsupervised video object tracking:

- Apply appearance and motion based unsupervised tracking method [1]
- For each video choose 9 highest ranked tracks
- Select highest scoring box: score $(t_i^f) = \Sigma_i IOU(v_i^f, t_i^f) X sim(r_i, v_i^f)$

TRACK AND TRANSFER: WATCHING VIDEOS TO SIMULATE STRONG HUMAN SUPERVISION FOR WEAKLY-SUPERVISED OBJECT DETECTION Krishna Kumar Singh Fanyi Xiao Yong Jae Lee

Transferring tracked object boxes:

Best match and

tracked box

Positive Image

Transferred box

- For each positive region, find *n* best matching video regions and return corresponding tracked object boxes to the image
- Create 4-dimensional hough space where each box casts a vote for its coordinates

Training an object detector:

- Train R-CNN using discovered pseudo ground-truth boxes
- Perform latent SVM update to improve the pseudo GT boxes
- Fine-tune the R-CNN model to update the features using pseudo GT boxes

Quantitative Results:

VOC 2007	Aero	Bird	Boat	Car	Cat	(0)	м Г)na	Horse	Mhike	Train	mΔP
Wang at al. 2014	10 0	26.1	11.2	40.0		24	7 0	лл		E2 7	24.0	
wang et al., 2014	46.9	20.1	11.5	40.9	54.7	54.	. 3	4.4	55.4	52.7	54.0	55.4
Cinbis et al., 2015	39.3	28.8	20.4	47.9	22.1	33.	5 2	9.2	38.5	47.9	41.0	34.9
Ours	53.9	37.7	13.7	56.6	51.3	24.	0 3	8.5	47.9	47.0	48.4	41.9
VOC 2010	Aero	Bird	Boat	Car	Cat	Со	w E	Dog	Horse	Mbike	Train	mAP
Cinbis et al., 2015	44.6	25.5	14.1	36.3	23.2	26.	.1 2	9.2	36.0	54.3	31.2	32.1
Ours	53.5	37.5	8.0	44.2	49.4	33.	.7 4	3.8	42.5	47.6	40.6	40.1
Ablation Study (VOC 2007)		Aero	Bird	Boat	Car	Cat	Cow	Dog	Horse	Mbike	Train	mAP
Initial pseudo GT		43.4	30.5	11.9	50.2	39.6	16.7	31.6	5 36.7	42.2	40.7	34.4
Updated pseudo GT (UGT)		48.0	34.2	12.2	51.3	43.0	21.9	33.4	39.1	43.8	42.2	36.9
UGT + bbox-reg		50.7	36.6	13.4	53.1	50.8	21.6	37.6	6 44.0	46.1	43.4	39.7
UGT + bbox-reg + finetune		53.9	37.7	13.7	56.6	51.3	24.0	38.5	5 47.9	47.0	48.4	41.9

Qualitative Results:

- Our method accurately localizes the object in many images

Conclusion:

- transfers object boxes from weakly-labeled videos to images
- categories of the YouTube-Objects dataset

Acknowledgement: This work was supported in part by an Amazon Web Services Education Research Grant and GPUs donated by NVIDIA **Reference:** [1] F. Xiao and Y. J. Lee. Track and segment: An iterative unsupervised approach for video object proposals. In CVPR, 2016.

CVPR2016

Each image pair consists of heatmap of transferred video object boxes and final selected pseudo GT box; last column shows some failure cases

A novel weakly-supervised object detection framework that tracks and State-of-the-art-results on PASCAL 2007 and 2010 datasets for the 10